Принято на заседании Педагогического совета Протокол № 1 от 30.08.2016

ПРИЛОЖЕНИЕ к ООП СОО Приказ директора МБОУ "Новорождественская СОШ" № 137/2 от 31.08.2016

Муниципальное бюджетное общеобразовательное учреждение "Новорождественская средняя общеобразовательная школа"

Рабочая учебная программа по физике для 10-11 класса Выполнена на основе рабочей программы «Физика 10-11 класс» Г.Я. Мякишева

Составила и адаптировала учитель математики Пуздря H.C

Пояснительная записка

Материалы для рабочей программы составлены на основе:

- федерального компонента государственного стандарта общего образования,
- примерной программы по физике основного общего образования (составители: Ю. И. Дик, В. А. Коровин)
- федерального перечня учебников, рекомендованных Министерством образования Российской Федерации к использованию в образовательном процессе в общеобразовательных учреждениях на 2013-14 учебный год,
- с учетом требований к оснащению образовательного процесса в соответствии с содержанием наполнения учебных предметов компонента государственного стандарта общего образования,
- авторской программы «Физика, 10 11», авт. Г. Я. Мякишев.

Рабочая программа содействует сохранению единого образовательного пространства, не сковывая творческой инициативы учителя, предоставляет широкие возможности для реализации различных подходов к построению учебного курса.

Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения. Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению. Ознакомление школьников с методами научного познания предполагается проводить при изучении всех разделов курса физики, а не только при изучении специального раздела «Физика и методы научного познания».

Гуманитарное значение физики как составной части общего образовании состоит в том, что она вооружает школьника *научным методом познания*, позволяющим получать объективные знания об окружающем мире.

Знание физических законов необходимо для изучения химии, биологии, физической географии, технологии, ОБЖ.

Курс физики в данной рабочей программе среднего (полного) общего образования структурируется на основе физических теорий: механика, молекулярная физика, электродинамика, электромагнитные колебания и волны, квантовая физика.

Особенностью предмета «физика» в учебном плане образовательной школы является и тот факт, что овладение основными физическими понятиями и законами на базовом уровне стало необходимым практически каждому человеку в современной жизни.

Изучение физики в средних (полных) образовательных учреждениях на базовом уровне направлено на достижение следующих целей:

- *освоение знаний о* фундаментальных физических законах и принципах, лежащих в основе современной физической картины мира; наиболее важных открытиях в области физики, оказавших определяющее влияние на развитие техники и технологии; методах научного познания природы;
- *овладение умениями* проводить наблюдения, планировать и выполнять эксперименты, выдвигать гипотезы и строить модели, применять полученные знания по физике для объяснения разнообразных физических явлений и свойств веществ; практического использования физических знаний; оценивать достоверность естественнонаучной информации;
- *развитие* познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний и умений по физике с использованием различных источников информации и современных информационных технологий;
- воспитание убежденности в возможности познания законов природы; использования достижений физики на благо развития человеческой цивилизации; необходимости сотрудничества в процессе совместного выполнения задач, уважительного отношения к мнению оппонента при

обсуждении проблем естественнонаучного содержания; готовности к морально-этической оценке использования научных достижений, чувства ответственности за защиту окружающей среды;

• использование приобретенных знаний и умений для решения практических задач повседневной жизни, обеспечения безопасности собственной жизни, рационального природопользования и охраны окружающей среды.

Рабочая программа предусматривает формирование у школьников общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций. Приоритетами для школьного курса физики на этапе среднего (полного) общего образования являются:

Познавательная деятельность:

- использование для познания окружающего мира различных естественнонаучных методов: наблюдение, измерение, эксперимент, моделирование;
- формирование умений различать факты, гипотезы, причины, следствия, доказательства, законы, теории;
- овладение адекватными способами решения теоретических и экспериментальных задач;
- приобретение опыта выдвижения гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез. Информационно-коммуникативная деятельность:
- владение монологической и диалогической речью. Способность понимать точку зрения собеседника и признавать право на иное мнение;
- использование для решения познавательных и коммуникативных задач различных источников информации. *Рефлексивная деятельность:*
- владение навыками контроля и оценки своей деятельности, умением предвидеть возможные результаты своих действий:
- организация учебной деятельности: постановка цели, планирование, определение оптимального соотношения цели и средств.

Место предмета в учебном плане

Федеральный базисный учебный план для образовательных учреждений Российской Федерации отводит 102 часа для обязательного изучения физики на базовом уровне ступени среднего (полного) общего образования.

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ

Обязательные результаты изучения курса «Физика» приведены в разделе «Требования к уровню подготовки выпускников», который полностью соответствует стандарту. Требования направлены на реализацию деятельностного и личностно ориентированного подходов; освоение учащимися интеллектуальной и практической деятельности; овладение знаниями и умениями, необходимыми в повседневной жизни, позволяющими ориентироваться в окружающем мире, значимыми для сохранения окружающей среды и собственного здоровья.

Рубрика «Знать/понимать» включает требования к учебному материалу, который усваивается и воспроизводится учащимися. Выпускники должны понимать смысл изучаемых физических понятий, физических величин и законов.

Рубрика «Уметь» включает требования, основанных на более сложных видах деятельности, в том числе творческой: описывать и объяснять физические явления и свойства тел, отличать гипотезы от научных теорий, делать выводы на основании экспериментальных данных, приводить примеры практического использования полученных знаний, воспринимать и самостоятельно оценивать информацию, содержащуюся в СМИ, Интернете, научно-популярных статьях.

В рубрике «Использовать приобретенные знания и умения в практической деятельности и повседневной жизни» представлены требования, выходящие за рамки учебного процесса и нацеленные на решение разнообразных жизненных задач.

В результате изучения физики на базовом уровне ученик должен знать/понимать

- смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения, планета, звезда, галактика, Вселенная;
- смысл физических величин: скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;
- *смысл физических законов* классической механики (всемирного тяготения, сохранения энергии, импульса), сохранения электрического заряда, термодинамики, электромагнитной индукции, фотоэффекта;
 - *вклад российских и зарубежных ученых*, оказавших наибольшее влияние на развитие физики; **уметь**
- *описывать и объяснять физические явления и свойства тел:* движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел; электромагнитную индукцию, распространение электромагнитных волн; волновые свойства света; излучение и поглощение света атомом; фотоэффект;
- *отпичать* гипотезы от научных теорий; *делать выводы* на основе экспериментальных данных; *приводить примеры, показывающие, что:* наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще неизвестные явления;
- *приводить примеры практического использования физических знаний:* законов механики, термодинамики и электродинамики в энергетике; различных видов электромагнитных излучений для развития радио и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров;
- *воспринимать и на основе полученных знаний самостоятельно оценивать* информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи;
 - оценки влияния на организм человека и другие организмы загрязнения окружающей среды;
 - рационального природопользования и защиты окружающей среды.

Для всех разделов при изучении курса физики средней школы в раздел «Требования к уровню подготовки выпускников» знать/понимать

- основные положения изучаемых физических теорий и их роль в формировании научного мировоззрения;
- *вклад российских и зарубежных ученых*, оказавших наибольшее влияние на развитие физики; **уметь**
- приводить примеры опытов, иллюстрирующих, что: наблюдения и эксперимент служат основой для выдвижения гипотез и построения научных теорий; эксперимент позволяет проверить истинность теоретических выводов; физическая теория дает возможность объяснять явления природы и научные факты; физическая теория позволяет предсказывать еще неизвестные явления и их особенности; при объяснении

природных явлений используются физические модели; один и тот же природный объект или явление можно исследовать на основе использования разных моделей; законы физики и физические теории имеют свои определенные границы применимости;

- описывать фундаментальные опыты, оказавшие существенное влияние на развитие физики;
- применять полученные знания для решения физических задач;
- представлять результаты измерений с учетом их погрешностей;
- *воспринимать и на основе полученных знаний самостоятельно оценивать* информацию, содержащуюся в сообщениях СМИ, научнопопулярных статьях; *использовать* новые информационные технологии для поиска, обработки и предъявления информации по физике в компьютерных базах данных и сетях (сети Интернета);

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи;
- анализа и оценки влияния на организм человека и другие организмы загрязнения окружающей среды;
- рационального природопользования и защиты окружающей среды;
- определения собственной позиции по отношению к экологическим проблемам и поведению в природной среде.

Содержание курса

10 класс

Механика

Физика — наука о природе. Научные методы познания окружающего мира и их отличия от других методов познания. Роль эксперимента и теории в процессе познания природы. *Моделирование физических явлений и процессов*. Научные гипотезы. Физические законы. Физические теории. *Границы применимости физических законов и теорий*. *Принцип соответствия*. Основные элементы физической картины мира.

Механическое движение и его виды. Относительность механического движения. Прямолинейное равноускоренное движение. Принцип относительности Галилея. Законы динамики. Всемирное тяготение. Законы сохранения в механике. Предсказательная сила законов классической механики. Использование законов механики для объяснения движения небесных тел и для развития космических исследований. Границы применимости классической механики.

Демонстрации

Зависимость траектории от выбора системы отсчета.

Падение тел в воздухе и в вакууме.

Явление инерции.

Сравнение масс взаимодействующих тел.

Второй закон Ньютона.

Измерение сил.

Сложение сил.

Зависимость силы упругости от деформации.

Силы трения.

Условия равновесия тел.

Реактивное движение.

Переход потенциальной энергии в кинетическую и обратно.

Лабораторные работы

- 1. Изучение движения тел по окружности под действием сил упругости и тяжести.
- 2. Изучение Закона сохранения механической энергии.

Молекулярная физика

Возникновение атомистической гипотезы строения вещества и ее экспериментальные доказательства. Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества. *Модель идеального газа*. Давление газа. Уравнение состояния идеального газа. Строение и свойства жидкостей и твердых тел.

Законы термодинамики. Порядок и хаос. Необратимость тепловых процессов. Тепловые двигатели и охрана окружающей среды.

Демонстрации

Механическая модель броуновского движения.

Изменение давления газа с изменением температуры при постоянном объеме.

Изменение объема газа с изменением температуры при постоянном давлении.

Изменение объема газа с изменением давления при постоянной температуре.

Кипение воды при пониженном давлении.

Устройство психрометра и гигрометра.

Явление поверхностного натяжения жидкости.

Кристаллические и аморфные тела.

Объемные модели строения кристаллов.

Модели тепловых двигателей.

Лабораторные работы

3. Опытная проверка Закона Гей-Люссака.

Электродинамика

Элементарный электрический заряд. Закон сохранения электрического заряда. Электрическое поле. Электрический ток. Закон Ома для полной цепи. Плазма.

Демонстрации

Электрометр.

Проводники в электрическом поле.

Диэлектрики в электрическом поле.

Энергия заряженного конденсатора.

Электроизмерительные приборы.

Лабораторные работы

- 4. Изучение последовательного и параллельного соединения проводников.
- 5. Измерение ЭДС и внутреннего сопротивления источника тока.

11 класс

Электродинамика

Магнитное поле тока. *Действие магнитного поля на движущиеся заряженные частицы*. Явление электромагнитной индукции. Взаимосвязь электрического и магнитного полей. Свободные электромагнитные колебания. Электромагнитное поле.

Электромагнитные волны. Волновые свойства света. Различные виды электромагнитных излучений и их практические применения.

Демонстрации

Магнитное взаимодействие токов.

Отклонение электронного пучка магнитным полем.

Магнитная запись звука.

Зависимость ЭДС индукции от скорости изменения магнитного потока.

Свободные электромагнитные колебания.

Осциллограмма переменного тока.

Генератор переменного тока.

Излучение и прием электромагнитных волн.

Отражение и преломление электромагнитных волн.

Лабораторные работы

- 1. Наблюдение действия магнитного тока на ток.
- 2. Изучение явления электромагнитной индукции.
- 3. Определение ускорения свободного падения при помощи маятника.

Оптика. Элементы специальной теории относительности.

Законы распространения света. Интерференция света.

Дифракция света. Поляризация света.

Прямолинейное распространение, отражение и преломление света.

Оптические приборы. Дифракционная решётка. Принцип относительности. Постулаты теории относительности. Основные следствия СТО.

Релятивистский закон сложения скоростей. Зависимость энергии тела от скорости его движения. Релятивистская динамика. Принцип соответствия.

Связь между массой и энергией.

Демонстрации

Интерференция света.

Дифракция света.

Получение спектра с помощью призмы.

Получение спектра с помощью дифракционной решетки.

Поляризация света.

Прямолинейное распространение, отражение и преломление света.

Оптические приборы

Лабораторные работы

- 4. Измерение показателя преломления стекла.
- 5. Определение оптической силы и фокусного расстояния собирающей линзы.
- 6. Измерение длины световой волны.

Квантовая физика и элементы астрофизики

Гипотеза Планка о квантах. Фотоэффект. Фотон. Гипотеза де Бройля о волновых свойствах частиц. Корпускулярно-волновой дуализм. Планетарная модель атома. Квантовые постулаты Бора. Лазеры.

Строение атомного ядра. Ядерные силы. Дефект массы и энергия связи ядра. Ядерная энергетика. Влияние ионизирующей радиации на живые организмы. Доза излучения. Закон радиоактивного распада. Элементарные частицы. Фундаментальные взаимодействия.

Солнечная система. Звезды и источники их энергии. Галактика. Пространственные масштабы наблюдаемой Вселенной. Современные представления о происхождении и эволюции Солнца и звезд. Строение и эволюция Вселенной.

Демонстрации

Фотоэффект.

Линейчатые спектры излучения.

Лазер.

Счетчик ионизирующих частиц.

Лабораторные работы

7. Наблюдение сплошного и линейчатого спектров.

Итоговое повторение (4 ч)

Программно-методическое обеспечение

- 1. Сборник нормативных документов. Физика. Федеральный компонент государственного стандарта. Федеральный базисный план. Составители: Э.Д. Днепров, А.Г. Аркадьев, М,: Дрофа, 2004.;
- 2. Программы для общеобразовательных учреждений: Физика. Астрономия. 7-11 кл. Сост. Ю. И. Дик, В. А. Коровин. 2-е изд., испр. М. : Дрофа, 2001.
- 3. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика: Учебник для 10 класса общеобразовательных учреждений: 11-е изд. М.; Просвещение, 2010
- 4. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика : Учебник для 11 класса общеобразовательных учреждений: 11 изд. М.; Просвещение, 2011

- 5. Рымкевич А.П. Сборник задач по физике 10 11 классы: 7-е изд. М.; Дрофа, 2003
- 6. Физический практикум для классов с углубленным изучением физики: Дидактический материал для 9-11 классов: Под ред. Дика Ю.И., Кабардина О.Ф. М.; Просвещение, 1993
- 7. Фронтальные лабораторные работы по физике в 7-11 классах общеобразовательных учреждений: Под ред. Бурова В.А., Никифорова Г.Г. М.; Просвещение, «Учебная литература», 1996
- 8. Кабардин О.Ф., Орлов В.А. Экспериментальные задания по физике 9-11 классы М.; Вербум-М, 2001
- 9. Практикум по физике в средней школе: Дидактический материал: Под ред. Бурова В.А., Дика Ю.И. М.; Просвещение, 1987
- 10. Практикум по физике в средней школе: Дидактический материал под ред. Покровского А.А. М.; Просвещение, 1982
- 11. Левитан Е.П. Астрономия. Учебник для 11 класса общеобразовательных учреждений М.; Просвещение, 2004
- 12. Порфирьев В.В. Астрономия -11: 8-е изд. -М.; Просвещение, 2003
- 13. Сборник задач по физике 10-11 классы: Сост. Степанова Г.Н. 9-е изд. М.; Просвещение, 2003
- 14. Извозчиков В.А., Слуцкий А.М. Решение задач по физике на компьютере: Книга для учителя. М.; Просвещение, 1999
- 15. Мансуров А.Н., Мансуров Н.А. Физика 10-11: Для школ с гуманитарным профилем обучения: Книга для учителя. М.; Просвещение, 2000
- 16. Мякишев Г.Я., Синяков А.З. Физика: Молекулярная физика. Термодинамика. 10 кл.: Учебник для угл.изучения физики М.; Дрофа, 2001
- 17. Мякишев Г.Я., Синяков А.З. Физика: Оптика. Квантовая физика. 11 кл.: учебник для угл. изучения физики: 3-е изд. М.; Дрофа, 1998
- 18. Мякишев Г.Я., Синяков А.З., Слободсков Б.А. Физика: Электродинамика 10-11 кл.: Учебник для угл.изучения физики: 3-е изд. М.; Дрофа, 1998
- 19. Мякишев Г.Я., Синяков А.З. Физика: Колебания и волны. 11 кл.: Учебник для угл.изучения физики: 3-е изд. М.; Дрофа, 2001
- 20. Мякишев Г.Я., Синяков А.З. Механика. 10 кл.: Учебник для угл.изучения физики: 3-е изд. М.; Дрофа, 2001

Аннотация к рабочим программам по физике

10 - 11 класс (среднее общее образование)

Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения. Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению. Подчеркнем, что ознакомление школьников с методами научного познания предполагается проводить при изучении всех разделов курса физики, а не только при изучении специального раздела «Физика и физические методы изучения природы».

Гуманитарное значение физики как составной части общего образовании состоит в том, что она вооружает школьника *научным методом познания*, позволяющим получать объективные знания об окружающем мире.

Знание физических законов необходимо для изучения химии, биологии, физической географии, технологии, ОБЖ.

Курс физики в примерной программе основного общего образования структурируется на основе рассмотрения различных форм движения материи в порядке их усложнения: механические явления, тепловые явления, электромагнитные явления, квантовые явления. Физика в основной школе изучается на уровне рассмотрения явлений природы, знакомства с основными законами физики и применением этих законов в технике и повседневной жизни.

Цели изучения физики

- *освоение знаний* о механических, тепловых, электромагнитных и квантовых явлениях; величинах, характеризующих эти явления; законах, которым они подчиняются; методах научного познания природы и формирование на этой основе представлений о физической картине мира. О строении и эволюции Вселенной;
- *знакомство с основами физических теорий*: классической механики, молекулярно-кинетической теории, термодинамики, электродинамики, специальной теорией относительности, квантовой теории;
- *овладение умениями* проводить наблюдения природных явлений, описывать и обобщать результаты наблюдений, использовать простые измерительные приборы для изучения физических явлений; представлять результаты наблюдений или измерений с помощью таблиц, графиков и выявлять на этой основе эмпирические зависимости; применять полученные знания для объяснения разнообразных природных явлений и процессов, принципов действия важнейших технических устройств, для решения физических задач;
- *развитие* познавательных интересов, интеллектуальных и творческих способностей, самостоятельности в приобретении новых знаний, при решении физических задач и выполнении экспериментальных исследований с использованием информационных технологий;
- воспитание убежденности в возможности познания законов природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважения к творцам науки и техники; отношения к физике как к элементу общечеловеческой культуры.
- использование полученных знаний и умений для решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды.

Сведения о программе:

Рабочая программа по физике составлена на основе федерального компонента государственного стандарта основного общего образования.

Изучаемый материал разбит на тематические блоки (модули). В рамках модуля учащиеся могут выбирать различные учебные траектории, но сроки окончания модуля строго ограничены контрольным мероприятием. Количество часов на изучение отдельных тем не изменено, структурный

порядок изучения тем сохранен, расширение содержания учебного материала происходит в процессе решения специально подобранных разноуровневых задач (Система задач).

Курс физики 10 – 11 класса включает 8 разделов: «Механика», «Молекулярная физика. Термодинамика», «Электродинамика». Курс физики 11 класса включает 5 разделов: «Электродинамика», «Колебания и волны», «Оптика», «Квантовая физика», «Элементы астрофизики».

Данная структура курса имеет следующие особенности:

- теория относительности изучается сразу после механики и до электродинамики и оптики, что позволяет показать место механики в современной физической картине мира и с самого начала изучения курса следовать идее единства классической и современной физики;
- далее следует большой раздел о строении и свойствах вещества, в котором вслед за классическими представлениями молекулярной физики, включающей молекулярно-кинетическую теорию и термодинамику, рассматриваются квантовые идеи физики атома, атомного ядра и элементарных частии.

Рабочая программа курса разработана на основе авторской программы В.С. Данюшенков, О.В. Коршунова – (базовый уровень), программы общеобразовательных учреждений - М., Просвещение.

Учебно-методический комплекс:

1. Учебники:

для 10 класса общеобразовательных учреждений / Γ .Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский. — 15-е изд. — М.: Просвещение, 2006. — 365 с./; для 11 класса общеобразовательных учреждений / Γ .Я. Мякишев, Б.Б. Буховцев — 156-е изд. — М.: Просвещение, 2007. — 365 с./;

2. Сборник задач по физике: для 10-11 класс общеобразовательных учреждений / Сост. Г.Н. Степанова. – 9-е изд. М.: Просвещение, 2003.

Информация о количестве учебных часов: 10 класс – 68 часа (2 часа в неделю); 11 класс – 68 часов (базовый уровень стандарта 2 часа в неделю) и 170 часов (профильный уровень стандарта 5 часов в неделю)

Ведущие формы и методы, технологии обучения:

<u>Формы организации учебных занятий:</u> изучение нового материала; семинарские занятия; обобщения и систематизации; контрольные мероприятия.

<u>Используемы методы обучения</u> (по И. Я. Лернеру): объяснительно-иллюстративный; проблемное изложение, эвристический, исследовательский.

<u>Используемые педагогические технологии:</u> информационно-коммуникационные; компетентностный подход к обучению (авторы: Хуторский А.В., Зимняя И.А.), дифференцированное обучение (автор: Гузеев В.В).

Механизмы формирования ключевых компетенций учащихся:

Оптимальным путем развития ключевых компетенций учащихся является стимулирующий процесс решения задач при инициативе учащегося. Решение задач является одним из важных факторов, развивающим мышление человека, которое главным образом формируется в процессе постановки и решении задач. В процессе решения качественных и расчетных задач по физике учащиеся приобретают «универсальные знания, умения, навыки, а также опыт самостоятельной деятельности и личной ответственности», что соответствует определению понятия ключевых компетенций.

Поле решаемых задач – Система задач - удовлетворяет внутренним потребностям учащихся; выводит знания, умения и навыки всех учеников на стандарт образования (программа минимум); активизирует творческие способности, нацеливает на интеграцию знаний, полученных в процессе изучения различных наук, ведет к ориентировке на глобальные признаки, (последнее утверждение относится к учащимся, работающим над задачами продвинутого уровня); практико-ориентирована, содержит современные задачи, отражающие уровень развития техники, нацеливает на последующую профессиональную деятельность, что особенно актуально для выпускников.

В информационной структуре поля учебных задач, заключены соответствующие виды знаний и умений, детерминирующие такие виды учебно-познавательной деятельности, как познавательная, практическая, оценочная, учебная. Решение задач является эффективным способом реализации компетентностного подхода к обучению.

Общеучебные умения, навыки и способы деятельности

Рабочая программа предусматривает формирование у школьников общеучебных умений и навыков, универсальных способов деятельности и ключевых компетенций. Приоритетами для школьного курса физики на этапе основного общего образования являются:

Познавательная деятельность:

- использование для познания окружающего мира различных естественнонаучных методов: наблюдение, измерение, эксперимент, моделирование;
- формирование умений различать факты, гипотезы, причины, следствия, доказательства, законы, теории;
- овладение адекватными способами решения теоретических и экспериментальных задач;
- приобретение опыта выдвижения гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез.

Информационно-коммуникативная деятельность:

- владение монологической и диалогической речью, развитие способности понимать точку зрения собеседника и признавать право на иное мнение;
- использование для решения познавательных и коммуникативных задач различных источников информации.

Рефлексивная деятельность:

- владение навыками контроля и оценки своей деятельности, умением предвидеть возможные результаты своих действий:
- организация учебной деятельности: постановка цели, планирование, определение оптимального соотношения цели и средств.

Используемые формы, способы и средства проверки и оценки результатов обучения по данной рабочей программе:

Формы контроля: самостоятельная работа, контрольная работа; тестирование; лабораторная работа; фронтальный опрос; физический диктант; домашний лабораторный практикум.